Séminaire INED-SMS “Notions d’'age, de période et de cohorte” Direct Smoothing. an example

Daily SARS deaths (2003)
source: http://www.who.int/csr/sars/country/en/
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Direct smoothing: how does it work? Direct smoothing in matrix
We h _ » Minimize:

e .ave an n—vect(?r. y . S=ly— ,r'|2 + }\|D’I’]|2
We aim to have a fitted n-vector, n with (balanced)

» accuracy to the data (fit)
» smooth behavior (roughness)

v

v

» Example of D:

» We measure the fit: 5 (y; —n;)?
» 7 is rough when n; —m;_1 = An; is big Lo
» We measure the roughness as > (An;)? b= 8 (1) _1 —2

v

We minimize (Whittaker, 1923):

S= Z(Yi —n)* + AZ(Aﬂi)z » This is a linear system:
n n

A= (1+AD'D) 1y

v

Higher A = smoother 1



Direct smoothing: fitted data with d =1 Direct smoothing with higher differences
Daily SARS deaths (2003), smoothing with A » We can measure roughness by second differences:
—=— Actual data 27:3 (T]l - 21'],‘,1 +ni—2)2
30 — A=10
— A =100

25 » In general we minimize:

20 S= Z(Yi —n)?+A Z (A%n;)?
i—1

i=d+1

deaths

with explicit solution:

fi = (1+ADgDg) "'y

» For a given A, outcomes are less smooth

day

Direct smoothing: fitted data with d =2 Direct smoothing of counts

Daily SARS deaths (2003), smoothing with A2
» We have counts (we also need to force positive fitted values)

—=— Actual data
30 — A=10
—— A=100

We assume Poisson distribution: P(y;i|it;) = p)" exp(—p;)/yi!

We work on the expectation: E(y;) = u;

>
25 >
» ... and "linear predictor’: n =In(u)
. » We have a non-linear system of equations, in an iterative

15 process, at step t + 1:

deaths

1222

.
M N1 = (We+AD'D) Ly — pr + W]

where W; = diag(p:) and 71 = In(y + 1)

M1 = ('W+AD'D) I'W, [y By nt}
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Direct smoothing: features

Generalized linear smoothing

Daily SARS deaths (2003), smoothing with A2

—=— Actual data
30 — A=100
- A =1000

» Advantages:
» easy to explain and to use
> easy to generalize
» automatic interpolation
» fast (with sparse matrices)
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» Disadvantages:
> equispaced y
» no easy diagnostic
» the size of the problem increases proportionally with n

day

Simple least-squares

Model matrices

» We have an n-vector y and covariate(s) x
» We assume E(y;) = 1 = xg + x1x; S "
» We minimize: o ! ..
n L= I
S=> lyi—(xo+ o)) —x b .
i=1 - .

> In matrix: -~ o
1 xq xl2 xf’ x¢ X0 -
1 o x2 X5 X3 %1
X = ) ; ; a=| x , =X« §
. Do 3
2 4 4 @
1 x, x5 x; X, x4 . |

» We minimize: ly — Xal? = X'Xa =Xy = & = (X’X)"1X'y



Can we do better? Slightly more complex example

» Simple basis is good for simple example

Simulated data and B-splines

» Basis function (powers of x) are global soq T S
» Moving one end moves the other end too 25 -
» Unexpected wiggles 20 1
» The higher the degree the more is sensitive v 15

» We seek for local basis

0.5 o
» Useful for more complex data

0.0

» No assumptions on the trend (let the data speak by
themselves! ) 0.0 02 04 06 0.8 1.0

» Smooth outcomes

Introducing B-splines Fitting with 20 B-splines
» Create a suitable basis = (equidistant) B-splines:

Bl (X1 ) BQ (X1 ) B3 (X1 ) cee Bk (Xl ) Simulated data and B-splines

Bi(x2) Ba(x2) Bs(x2) ... Bi(x) s |+ Smaes]

25
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Bi(x) Balxa) Bil(xs) ... Bilxa)
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» E(y)=p=Ba = &= (B'B)'By



Fitting with 20 B-splines Penalizing the coefficients: P-splines

» Outcomes are not smooth, we could:
> take less B-splines

Simulated data and B-splines with unpenalized coefficients

4o |- smumed - » place each B-splines in specific positions
— » set a double goal:
“1 1. good fit to the data, i.e. low least-squares: S = |y — Ba?
20 2. smooth curve, i.e. low roughness: R = |Da?
y 15 » We balance this two object-functions:
S*=S+AR =y — Bal’ + ADaf?
0.5 o
» Given a A, this is again a linear system of equation with
7 explicit solution:

. ' ' &= (B'B+AD'D) By

Including a penalty, d =2 Including a penalty, d =2

Simulated data and B-splines Simulated data and B-splines with unpenalized coefficients
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Including a penalty, d = 2 P-splines for Poisson data

» We assume again a Poisson distribution: y; ~ Poi(u;)
Simulated data and B-splines with penalized coefficients, A = 10 > We use again a “|inear predictor”: n = In(l,l,) — Ba
+  Simulated . t. . . . . .
30— Fited Lo » We have a non-linear system of equations, in an iterative
process, at step t + 1:

éit+1 = (B'WB +AD'D) 'B'W,z,,

where
z=(y— )/ + Ba (working dependent variable)

W = diag(f1) (weight matrix)

» We can include an offset (exposures for mortality data) just
.‘ f ‘ ‘, ‘. .‘ changing:
: p = e exp(n) = exp(Ba +In(e))

Data and fitting in one dimension Data and fitting in one dimension
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Actual and smooth death rates in log-scale over ages (10-100) for a given year (1930).

A graphical representation of the data set in 1D Denmark, females.

over ages (10-100) for a given year (1930).
Modelling mortality: a non-parametric approach _ Modelling mortality: a non-parametric approach



Data and fitting in one dimension Data and fitting in one dimension
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A graphical representation of the data set in 1D Actual and smooth death rates in log-scale over years (1930-2011) for a given age
(65).

over years (1930-2011) for a given age (65).
Denmark, females.
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Looking at mortality data over age and years
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A graphical representation of the available data over ages (10-100) and years
(1930-2011). Denmark, females.

Looking at mortality data over age and years

age = 59

log death rates
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Death rates in log scale over years for different ages.
Ages from 10 to 100. Denmark, females, 1930-2011.
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Looking at mortality data over age and years

year = 1979
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Death rates in log scale over ages for different years.
Ages from 10 to 100. Denmark, females, 1930-2011.

Looking at mortality data over age and years
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Death rates. Ages from 10 to 100. Denmark, females, 1930-2011.



Direct smoothing and the idea of penalty

P-splines: a crash course ined (@
Smoothing over age and time, and age and cohort ine

P-splines for mortality on rectangular grid

» We arrange both death and exposures matrices in columns

» The regression matrix for our two-dimensional model is the
Kronecker product B = B, ® B,, where a and y stand for age
and year dimensions

» B has an associated vector of regression coefficients ¢, which
can be arranged in a matrix A

» We penalized the coefficients to each of the columns and rows
of A:

P =Ml ®D.D, +A,D.D, @1

As and A, are the smoothing parameters used for age and
year, respectively (Currie et al. 2006).

INED-SMS. - Camarda C.G. Modelling mortality: a non-parametric approach
Direct smoothing and the idea of penalty
P-splines: a crash course ined (@
Smoothing over age and time, and age and cohort ine

P-splines on rectangular grid
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Direct smoothing and the idea of penalty

P-splines: a crash course . d (@
Smoothing over age and time, and age and cohort ine

P-splines on rectangular grid
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Direct smoothing and the idea of penalty
P-splines: a crash course . d ((0,
Smoothing over age and time, and age and cohort ine

P-splines on rectangular grid
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Fitted mortality over ages and years
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Death rates. Ages from 10 to 100. Denmark, females, 1930-2011. Colors based on
actual level and third dimensions.

Fitted mortality over ages and years
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Actual and smooth death rates in log scale.
Ages from 10 to 100. Denmark, females, 1930-2011.

Fitted mortality over ages and years
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Death rates. Ages from 10 to 100. Denmark, females, 1930-2011. Actual (left)
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Looking at mortality data over age and cohorts
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A graphical representation of the available data over ages (10-100) and cohorts

(1920-2001). Denmark, females.



Looking at mortality data over age and cohorts Looking at mortality data over age and cohorts
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Death rates in log scale over ages for different cohorts. Death rates in log scale over cohorts for different ages.
Ages from 10 to 100. Denmark, females, cohorts 1920-2001. Ages from 10 to 100. Denmark, females, cohorts 1920-2001.
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Looking at mortality data over age and cohorts Estimating uncompleted cohorts

» We treat the uncompleted cohorts as a missing value problem
» The model works when data are on a rectangular grid

0.25832

[}
. N re-arrange parallelogram to obtain a rectangular grid by
00335 » placing dummy variables for death and exposures over the
0otsis uncompleted cohorts (Y, E) and augmenting the B-spline

“1 | 0.00698 baSIS (E)
» adding in the algorithm a weight matrix (V) with zero weights
over the uncompleted cohorts

age

0.00343

Ll
40 i L
: 0.00176

(B'VWB + P)a = B'VW

N2

0.00075

: F g oooss with z = V(y — &a)/(8i) + Ba.

; ; » We estimate the fitted and “extrapolated” values
1850 1900 1950 .
cohort simultaneously
Death rates. Ages from 10 to 100. Denmark, females, cohorts 1830-2001. » This approach is useful to forecast uncomp|eted cohorts



Fitted mortality over ages and cohorts Fitted mortality over ages and cohorts
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A graphical representation of the available data over ages (10-100) and cohorts
(1920-2001). Denmark, females. Actual and smooth death rates in a log scale.
Ages from 10 to 100. Denmark, females, cohorts 1830-2001.
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Optimizing A BIC for the SARS data, d =2
» A possibility is the Bayesian Information Criterion (BIC): = ]

30

500

BIC = Dev + In(n)ED

25 -

400

20 -

v

For Poisson: Dev =23 y;log(yi/pi)

300
L

200

v

Commonly: ED = trace(H)

100
L

H

v

(W +AD'D)"'wW

v

Other possibilities: AIC, CV, GCV



BIC for the SARS data, d =3 Looking at selected ages and thier derivatives
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Death rates. Numeric derivatives from actual data for selected ages over years.
Denmark, females, 19302011.

Looking at selected ages and thier derivatives
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Death rates. Numeric derivatives from smooth data with 2D P-splines for selected
ages over years. Denmark, females, 19302011.



