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Introduction

Types of networks: (— development of statistical approaches)
» Binary + static edges
» Discrete / continuous / categorical / ...

» Covariates on vertices / edges
» Dynamic edges:

» Continous time — point processes
» Discrete time — Markov....

Types of clusters: (— development of statistical approaches)
» Communities (transitivity)
» Heterogeneous clusters

» Partitions, overlapping clusters, hierarchy



Introduction

Essentially, two starting points:
» The latent position model [HRH02|
» The stochastic block model [WW87, NS01]



Introduction
Networks can be observed directly or indirectly from a variety of
sources:
» social websites (Facebook, Twitter, ...),
» personal emails (from your Gmail, Clinton’s mails, ...),
» emails of a company (Enron Email data),
» digital /numeric documents (Panama papers,
co-authorships, ...),
» and even archived documents in libraries (digital
humanities).

LR

= most of these sources involve text!

o



Introduction

Figure: An (hypothetic) email network between a few individuals.
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Figure: A typical clustering result for the (directed) binary network.
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Figure: The (directed) network with textual edges.
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Figure: Expected clustering result for the (directed) network with
textual edges.
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network of M vertices into @ groups:
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Context and notations

We are interesting in clustering the nodes of a (directed)
network of M vertices into @ groups:

> the network is represented by its M x M adjacency matrix
A:
A {1 if there is an edge between i and j
ij =

0 otherwise

» if A;; = 1, the textual edge is characterized by a set of D;;
documents:

Wi = (W, Wi, . w9

R 17 ij
» cach document VVZ‘j is made of Ng. words:

" dNZ
Wi = (W, Wi, W),

ij o1 ij o



Modeling of the edges

Let us assume that edges are generated according to a SBM
model:

» cach node i is associated with an (unobserved) group
among () according to:

Y; ~ M(1, p),

where p € [0,1]9 is the vector of group proportions,



Modeling of the edges

Let us assume that edges are generated according to a SBM
model:

» cach node i is associated with an (unobserved) group
among () according to:

Yi ~ M(1, p),
where p € [0,1]9 is the vector of group proportions,

» the presence of an edge A;; between ¢ and j is drawn
according to:
AijYigYjr =1 ~ B(mgr),

where 7y, € [0,1] is the connection probability between
clusters ¢ and 7.



Modeling of the documents
The generative model for the documents is as follows:

» cach pair of clusters (g, ) is first associated to a vector of
topic proportions g, = (0grk)r sampled from a Dirichlet
distribution:

40 ~ Dir (o),

such that Zszl Ogri = 1,V(q, 7).
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Modeling of the documents
The generative model for the documents is as follows:

» cach pair of clusters (g, ) is first associated to a vector of
topic proportions g, = (0grk)r sampled from a Dirichlet
distribution:

40 ~ Dir (o),

such that ZkK_l Ogri = 1,V(q, 7).

» the nth word Wd” of documents d in Wj; is then associated

to a latent topic Vector Z;’;n according to:
Z8{AiYigYye = 1,0} ~ M(1,6g,).

» then, given Zf;", the word Wd" is assumed to be drawn

from a multinomial dlstrlbutlon

Wz(jn|Z7fiJnk =1~ M (]-aﬁk: = (ﬁk‘la .. 7ﬁkV)) )

where V' is the vocabulary size.



Modeling of the documents

» notice that the two previous equations lead to the following
mixture model for words over topics:

K

Wgn’ {YqujrAij =1, 9} ~ Z equM (1’ Bk) '
k=1



STBM at a glance...
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Figure: The stochastic topic block model.
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Figure: The stochastic topic block model.



Inference
The full joint distribution of the STBM model is given by:
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Inference
The full joint distribution of the STBM model is given by:

p(A WY, Z,0\p,m,B) =p(W, Z,0|A,Y, B)p(A,Y |p, 7).

A key property of the STMB model:

» let us assume that Y is observed (groups are known),

» it is then possible to reorganize the documents

D =73, ; Dij documents W such that:

W= (qu)qr where qu = {chjlﬂv(dvll7j)7 qu}/JTAl] = 1} )
» since all words in qu are associated with the same pair

(g,r) of clusters, they share the same mixture distribution,
» and, simply seeing qu as a document d, the sampling

scheme then corresponds to the one of a LDA model with
D = @? documents.



Inference

Given the above property of the model, we propose for inference
to maximize the complete data log-likelihood:

log p(A, W, Y |p,m, 8) =log ) /GP(A, W.Y, Z,6|p,,3)db,
Z

with respect to (p, 7, 5) and Y = (Y1,...,Y).



Inference

» C-VEM algorithm — clustering of words and analysis of
the corpus,

» [ICL criterion for model selection — number of clusters and
number of topics
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Conclusion

v

STBM : allows to model networks with textual edges
C-VEM algorithm for inference

Model selection criterion

v
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Find clusters of nodes and topics of discussions
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