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 applied to human mobility)



« Network science »?

small-world networks  
> high clustering coefficient  
(like regular lattices) 
+ short characteristic distance  
(like random networks)

scale-free networks  
(node connectivity exhibits  
no typical scale  
i.e. the degree distribution is unbounded 
over several order of magnitudes)

Late 1990’s turn: availability of data about large, real-world networks  
> emergence of a « network science » made by statistical physicists

(Watts and Strogatz, 1998, Nature)

(Barabási and Albert, 1999, Science)

Actors collaborations WWW pages

> Hidalgo (2017) Disconnected, fragmented, or united?  
a trans-disciplinary review of network science

Models, e.g. 
continuous growth  
+ preferential attachment  
= scale-free net



Network science?



Some quantities of interest  
for (large) networks
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Node degree: number of neighbors

Node degree distribution

Clustering coefficient  
(to what extent neighbors are connected)

Distance between nodes

Betweenness centrality
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Mobility networks?
Are spatial networks 

2) Travel behavior  
on top of them  
(flows + individual trajectories)

1) Infrastructure / Transport 
(street/subway/bus/…) 
-> multiple layers

3) Social networks  
on the move

Tokyo metro map

Air traffic  
map in 2015

From Toole et al. (2015)  
Interface



1) Transport networks - street networks

Spatial distribution of Paris most central nodes  
(with centrality g such that g > max(g)/10)

Barthelemy, Bordin, Berestycki and Gribaudi (2013)  
Self-organization versus top-down planning in the evolution of a city, Sci. rep.



1) Transport networks - subway networks

> Roth et al. (2012)  
A long time limit  
for world subway  
networks; 
Interface



ICT data



MULTI-SCALE DYNAMICS 
MEASURED WITH ICT DATA



Social aspects of mobility
[Bagrow & Lin, PlosOne, 2012]

[Crandall et al.,  PNAS, 2010]

[Toole et al., Interface, 2015]



Social aspects of mobility
[Herrera-Yagüe et al., Sci.rep., 2010]

[Sun et al., Interface, 2015]

[Sun et al., PNAS, 2013]



Spatial networks? (Barthelemy, 2011, Spatial Networks,  
Physics Reports)

> Nodes and edges are embedded in space  
This strongly constrains the creation of links

- Planar 
(e.g. road networks, subways,  
mobility networks) 

- Non-planar (intersecting links) 
(e.g. airline net, cargo ship nets, 
the Internet)

Effect of geographical space on networks properties include:
> Peaked P(k) in most cases, but can be broad for non-planar networks

> clustering coefficient ++

> <l> ~ N1/2


> Large betweenness centrality (BC) fluctuations;  

> Ducruet and Beauguitte (2014) Spatial science and network science: Review and outcomes of a complex relationship

M.Bunel, ERC Worldseastems (2017)



http://ifisc.uib-csic.es 

Uncovering the spatial structure

of mobility networks

Louail et al. (2015) Nature Comm.
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1st type of mobility network

Origin-Destination (OD) matrices

Classic object to study commuting patterns

F(i,j) is the number of individuals that live in i and work in j

Provides the complete information on the commuting flows
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(from Bertaud & Malpezzi 2003)

How to extract 
a simple and expressive footprint
of a large mobility network?

Can we build a typology of cities based 
on the spatial structure 
of their commuting patterns?

Inspiration: 
schematic/simple &gures 
of commuting 'ows 
in idealized city forms

Motivation
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1.Determine 
residential hotspots 
and employment hotspots

2.Separate 4 categories of �ows
• Integrated : 
from residential hotspots
to work hotspots

• Convergent : 
from elsewhere 
to work hotspots

• Divergent : 
from residential hotspots 
to elsewhere

• Random : 
from elsewhere 
to elsewhere

Extracting a simple footprint from an 
OD matrix
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p residen"al (out) hotspots 

m work (in) hotspots 

I

R

D

C
with I + D + C +R = 1

1.

2.

3.

Determine hotspots

(Louail et al. Sci. Rep. 2014)

Method
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Harmonized functionnal de&nition 
(same for all cities)

Comparing the commuting structure of 
31 Spanish cities
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ICDR values vs. P

Weight of Integrated )ows decreases 
when population size P increases, 
in favor of of Random )ows

Weights of Divergent and Convergent )ows
almost constant whatever the city size
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Flows I C D R

ICDR values vs. P Same values ranked by decreasing I

Weight of Integrated )ows decreases 
when population size P increases, 
in favor of of Random )ows

Weights of Divergent and Convergent )ows
almost constant whatever the city size

I and R alone seem su,cient 
to classify cities
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Null model&: ICDR values vs. P Z-scores

ICDR values : null model vs. data
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- For all types of )ows distance increases with population size
- Convergent Flows (C) are the longest and the most penalized when P increases

Average distance per type of 'ow
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- As cities grow, the spatial organisation of commuting )ows 
is more and more rationale (i.e. advantageous when compared to random )ows)
- Some small cities display a value less than 1,
indicating the lesser importance of space at shorter scales

Average distance per type of 'ow
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Biggest cities 
are clustered together

Robust with
di5erent sizes of 
the aggregation grid

1km * 1km grid 2km * 2km grid

Classi&cation of cities
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Cluster

Average 

population

of cities 

in cluster

 I R D C

Cordoba, 

Gijon, Vitoria, 

etc

255,330 0.43 0.27 0.16 0.14

Zaragoza, 

Malaga, etc. 392,970 0.37 0.36 0.15 0.13

Valencia, 

Sevilla, etc. 
732,992 0.31 0.41 0.16 0.13

Madrid

Barcelona, 

etc.

2,463,551 0.25 0.46 0.17 0.12 

4 clusters of cities
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Crowdsourcing the Robin Hood effect in cities

Louail et al. (2016) arxiv:1604.08394 
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Dataset

Provinces of Madrid and Barcelona
130 M of transactions

3.5 M of anonymized BBVA customers

320 000 businesses classi&ed in 16 categories

Each transaction contains the entire information (customer, 
business, amount, date)



http://ifisc.uib-csic.es 

Spatial distribution of business income

Barcelona
metropolitan area



http://ifisc.uib-csic.es 

Graph representation 
of credit card transactions
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Principles of rewiring methods
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3 other key aspects

In addition to the spatial distribution of business income 
and its distance to the egalitarian repartition (W),
we also take into consideration:

– The distance traveled (D)

– The spatial routines of individuals (   )
 

– The spatial mixing of individuals 
residing in di@erent parts of the city 
evaluated as the distance to a « fully mixed » city (S)
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Reachability of an egalitarian situation

Goal was
- To homogenize the spatial 
distribution of business income
- To preserve other key aspects
 
> Wealth inequalities
between neighborhoods
are reduced by 951%

Many possible rewiring methods

«1Clever1» methods 
perform better
5 Room for optimization

 



To go further

Ghoshal et al. (2017) Human mobility: models and applications  
Available on arxiv.org by the end of september

Thank you.

http://arxiv.org

