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The Cold War
• Alan Turing (”Computing Machinery and Intelligence”, Mind, 1950) is the first to ask

Canmachines think ?, W. Weaver (1949) Translation and C. E. Shannon published ”Pre-
diction and entropy of Printed English”, 1951

• The first projects in natural language processing (NLP) started during the cold war.
– The goal was to translate Russian into English with computers.
– The method relies on exhaustive dictionaries (word to word translation)

• The problem that showed up immediately is ambiguity

Example (Machine translation)

The spirit is willing but the flesh is weak
… translate to Russian then back into English …

The vodka is strong but the meat is rotten



Translation
(W. Weaver 1949)

• Machine translation can be automated

• Ambiguity can be solved thanks to context:
If one examines the words in a book, one at a time through an opaque mask with a hole in it one
word wide, then it is obviously impossible to determine, one at a time, the meaning of words. “
Fast” may mean “rapid”; or it may mean “motionless”; and there is no way of telling which. But, if
one lengthens the slit in the opaque mask, until one can see not only the central word in question
but also say N words on either side, then, if N is large enough one can unambiguously decide the
meaning…

• Cryptographic methods can be used for translation
One naturally wonders if the problem of translation could conceivably be treated as a problem in
cryptography. When I look at an article in Russian, I say: This is really written in English, but it has
been coded in some strange symbols. I will now proceed to decode. (Weaver 1947)

• Meaning can be represented independently of any specific language



Solving ambiguity…is hard

Example (Machine translation)
How to translate pen in examples such as:

Little John was looking for his toy box. Finally he found it. The box was in the pen.

1. La boite était dans le stylo (deepL – 2023)

2. La boite était dans l’enclos (me)

The Bar Hillel (1960) and ALPAC (1966) Reports
• The first experiments in computational language modelling highlighted the impor-
tance of common sense and implicit knowledge of the world and knowledge of lan-
guage

• Bar-Hillel (1960) ”The present status of automatic translation of languages”
– Conclusion: Fully automated machine translation is an illusion and the only reasonable

objective is Human aided automatic translation



Outline
1. Early Machine Translation
2. Symbolic NLP
3. Language models
4. Deep learning language models



The rise of symbolic AI and generative linguistics (1956)
• 1956: Dartmouth summer school (John Mc Carthy, Marvin Minsky, Allan Newell,
Claude Shannon, Herbert Simon…)

• 1956: ”Three models for the description of language” (Chomsky). The ALPAC report
also legitimates the generative endeavor and computational linguistics as the new
linguistics automating generative grammar

Symbolic AI

That’s the golden age of symbolic AI that
begins. In NLP, beyond Chomsky’s work on
formalizing language structure and works
from R. Montague (1970) allow to build
bridges with the semantics of formal
languages.

(2-(2+1))× - 2
×: 2

-2: -2-: -1

+: 3

1: 12: 2

2: 2

a mouse eats a cheese
eats(mouse, cheese)

eats a cheese
λx.eats(x, cheese)

a cheese
cheese

eats
λx, y.eats(x, y)

a mouse
mouse



A key milestone…
(SHRDLU, Winograd 1972)

HUMAN: Pick up a big red block.
SHRDLU: OK.
HUMAN: Grasp the pyramid.
SHRDLU: I don't understand which pyramid you mean
HUMAN: Find a block which is taller than the one you are holding

and put it into the box.
SHRDLU: by "it", i assume you mean the block which is taller than the one

I am holding.
SHRDLU: ok.
HUMAN: What does the box contain?
SHRDLU: The blue pyramid and the blue block.



The limits of symbolic AI
SHRDLU is one of the first impressive chatbots operating on a closed world. With few
ambiguities and such a small world, it is possible to formalize a language to talk with
the bot and the physics and implicits of the world.

The problem
SHRDLU does not generalize

Modeling language in an open world requires modeling a larger grammar but also
world knowledge, common sense, wider discourse context…and it becomes pretty hard
to do that with symbolic rules only.



Ambiguities
In an open world, ambiguities become one of the key problem:

• Consider :
1. Q1: John eats a salad with a knife
2. Q2: John eats a salad with tomatoes

• With what instrument does John eat the salad ?
1. A1 : with a knife
2. A2 : with tomatoes (???)

Implicit knowledge
For humans the answer to Q1 is obvious, the answer to Q2 should be problematic.
For a computer, predicting this contrast requires to model a database of world
knowledge that is not reasonable (attempts have failed)



Statistical models of language structure
• From the beginning of the 1990, to address ambiguity problems, and with the aug-
mentation of storage and computing power, the first machine learning models for
natural language processing start to emerge.

• There is the key hypothesis that language has hidden structure. For instance:

A hearing is scheduled on the issue today

root

det subj

nmod

vg

adv

pc

det

The problem
Generally speaking, annotated data for learning structured models of language is very
costly/time consuming to get. Annoted corpora are generally small and not
representative (natural language is far from being iid)
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Classical statistics
The standard dataset in statistics gathersmeasured data

Example (Iris)
Sepal Length Sepal Width Petal Length Petal Width Species

5.1 3.5 1.4 0.2 setosa

4.9 3.0 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa

4.6 3.1 1.5 0.2 setosa

5.0 3.6 1.4 0.2 setosa

• From there one can immediately use linear regression to perform predictions

y = w⊤x+ b

for instance:

SepalLength = w1SepalWidth+ w2PetalLength+ w3PetalWidth+ b



Machine learning for natural language
The standard dataset for written language is made of symbolic data

Example

token pos next token

the D cat

cat N sleeps

sleeps V on

on P the

the D mat

mat N [eos]

• Machine learning for natural language has to code symbols onmathematical objects
(vectors) prior to learn a mathematical model

• The vectors coding the symbols are called representations



One hot representations
One hot encoding is the naive default representation. It amount to create a dictionary
mapping symbols to vectors:

the 1 0 0 0 0 0

cat 0 1 0 0 0 0

sleeps 0 0 1 0 0 0

on 0 0 0 0 1 0

mat 0 0 0 0 0 1

• The input symbols are just replaced by their representation vector

• The statistical model outputs scores (real numbers) for each output symbol, thus the
basic model becomes:

y = Wx+ b

where y ∈ Rd has the size of the set of output symbols andW and b are the param-
eters



Turning scores into probabilities
• One can easily map a vector of positive reals to probabilities:

P(yi) =
yi∑d
j=1 yj

• In case the vector contains positive and negative reals, one uses the softmax func-
tion:

P(yi) =
exp(yi)∑d
j=1 exp(yj)

• The followingmodel is called softmax regression, ormultinomial logistic regression:

y = softmax(Wx+ b)

where y ∈ [0, 1]d and
∑d

j=1 yj = 1



Example
Next word prediction

How do we compute P(Y = sleeps|cat) ?
1. We map cat to its representation x = (0,1,0,0,0,0):

2. We compute a score for each output word with softmax regression

y = softmax(Wx+ b)

3. We pick P(Y = sleeps|cat) by looking up the probability of sleep at the relevant
position in y

Where do the parameters come from ?
Recall that linear regression minimizes the Mean square error on a dataset to
estimate the parameters, a softmax regression minimizes a loss function that plays
the same role



Generative language model
• Let a sentence be the sequence ofwordsω1 . . . ωn, a languagemodelnaturally com-
putes the probability of a sentence P(ω1 . . . ωn) relying on the chain rule of proba-
bility:

P(ω1 . . . ωn) =
n∏

i=1

P(ωi|ω1 . . . ωi−1)

• In practice one limits the context to some constant k (markov assumption)

P(ω1 . . . ωn) ≈
n∏

i=1

P(ωi|ωi−k . . . ωi−1)

Example
A bigram language model is a language model where k = 1 and each word is
predicted given its predecessor only

P(the cat sleeps on the mat) = P(cat|the)× P(sleeps|cat)× P(on|sleeps)
× P(the|on)× P(mat|the)



Softmax language model of higher order
Here is how you increase the context size to get a trigram model:

prev token token pos next token

[bos] the D cat

the cat N sleeps

cat sleeps V on

sleeps on P the

on the D mat

the mat N [eos]

The model computes sentence probabilities as :

P(ω1 . . . ωn) =

n∏
i=1

P(ωi|ωi−2, ωi−1)

where:
P(Ω|ωi−2, ωi−1) = softmax (Wxprev token ∥ xtoken + b)



Importance of the context size
from Shakespeare works

The larger the context (the larger the k) the better the model. Here are examples of
randomly generated sentences with increasing values of k:

• k=1, ”care I of . its destined , in , from . . for the Felix an not which measure excited”

• k=2, ”I compassionated him , how heavily ; but I had arrived , but they averred , my
unhallowed damps and”

• k=3, ”I continued their single offspring . At length I gathered from a man who , born
in freedom , spurned”

• k=4, ”I continued walking in this manner , during which I enjoyed the feeling of hap-
piness . Still thou canst listen”

• k=5, ”I continued walking in this manner for some time , and I feared the effects of
the daemon’s disappointment .”



Word embeddings
Less naive word representations

A word embedding algorithm creates small dimensional vectors that are verify the distributional
hypothesis

• One hot word vectors are highly dimensional (size of
the vocabulary) and their geometry is uninteresting
(they are all equally similar with cosine similarity).

• Word embeddings are small dimensional vectors
where vectors of words that are semantically similar
are similar (wrt cosine similarity)

• Distributional hypothesisWords that occur in similar
textual contexts are semantically similar

Relation with traditional methods
Other methods of dimensionality reduction were used before to compute word embeddings
(Latent Semantic analysis) but had quadratic complexity in the number of examples. word2vec
Mikolov (2013) scales up with linear complexity
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Neural network language model
(Bengio et al. 2003)

A neural network language model maps word symbols to one vectors (x). The one hot
vector is used to look up for the word embedding (e) into the matrix of word embed-
dings E and those are concatenated to get the context embedding h

P(Y|ωi−k . . . ωi−1) = softmax(Wh+ b)
h = Exi−k ∥ . . . ∥ Exi−1

Example (Trigram NNLM)

Ce modèle prédit le successeur

modèle prédit le successeur [fin]



Recurrent neural language models
RNNLM (Mikolov et al. 2011)

• Longer contextsMarkovian hypotheses are relaxed:

P(ω1 . . . ωn) =

n∏
i=1

P(ωi|ω1 . . . ωi−1)

• Recurrent Neural Networks (Elman 1991) are state-based models

ht = tanh(Wht−1 + Uet + b)
et = Ext

• The conditional probabilities are now dependant of contextualised embeddings

Ce modèle prédit le successeur

modèle prédit le successeur [fin]



Attention
• In practice RNNmodels (including LSTMs and GRU) can take only a finite context into
account

• To correct the problem, Bahdanau (2014) introduces an attention module that al-
lows to access past elements directly

k1 k2 k3 k4 k5 q5

aij = q⊤i kj

αi = softmax(ai1 . . . aii)



Summary
• The first attempts in language modeling were statistically based (information the-
ory).

• Problems of ambiguity, world knowledge and observations on the intrinsic structure
of language motivated symbolic AI approaches

• Ambiguity problems have been largely adressed with ”classical” (convex) machine
learning methods. The bottleneck is supervision since it requires human annota-
tions

• Deep learning methods and LLMs manage to learn on tremendous amount of data
because they are self supervised and they are able to capture very large contexts.
– An LLM is learned on a very large amount of raw text (foundational model)
– The downstream task is learned on a smaller annotated data set (fine-tuning)

The next step ?
RNNs as described so far are still relatively inefficient because they are state based.
Transformer-based generative language models manage to scale up using a fully
parallel model architecture.
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